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Abstract

We use analogue and numerical modelling to show that the flow of a Newtonian viscous fluid around a rigid body, in simple shear, depends

strongly on the degree of confinement, i.e. the ratio between the shear zone width (H) and the rigid inclusion’s least axis (e2) (SZH/e2). It also

depends on how closely we look at the inclusion, which leads to the definition of an effective channel length and an effective flow pattern,

compatible with micro-tectonics observations. If we consider a long channel, the flow pattern is bow tie-shaped, but tends to become eye-

shaped as S approaches infinity. If we zoom in to an effective channel no longer than 10 inclusion diameters, the flow pattern is effectively

bow tie-shaped for low to medium S values, but becomes effectively eye-shaped at medium to high S values. These changes may have great

influence on the geometry of tails around a rigid inclusion. Therefore, special care must be taken when trying to infer rock rheology (e.g.

viscous Newtonian or non-Newtonian) from geometrical patterns (e.g. geometry of a mantle and tails of recrystallized material around a rigid

body), which are assumed to reflect the flow type.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Effective bow tie- and eye-shaped flow; Newtonian matrix; Confined simple shear; Effective channel length; Analogue and numerical experiments
1. Introduction

The rheology of the Earth’s interior is typically assessed

at two quite different scales: the large scale, through

distributions of topography, gravity and heat flow (e.g.

Davies, 1999), and the sub-microscopic scale, through

evaluation of deformation mechanisms (e.g. Nicolas and

Poirier, 1976). However, the first can only give us an idea of

the overall behaviour of large volumes of the Earth’s

interior, and the second is commonly hampered by late-

stage recrystallization of the rock. Consequently, great

effort has been put into experimental rock mechanics and to

analogue and theoretical modelling of rock behaviour, with

particular attention being paid to the use of geometrical

patterns in deformed rocks as constraints on rock rheology

(e.g. Passchier et al., 1993; Hudleston and Lan, 1994;
0191-8141/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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Schmalholz and Podladchikov, 2001). Special attention has

been paid to mylonitic shear zones and to the geometry of

their constituents, because they play an important role in the

accommodation of shear movement in the lithosphere.

However, rock behaviour in mylonite zones is complex,

especially the rheology of these high-strain rocks as

reflected in the flow around strong or rigid inclusions,

and there is still disagreement concerning theoretical and

experimental models. For instance, Cox et al. (1968) and

Masuda and Ando (1988) came to the theoretical conclusion

that the flow of a Newtonian viscous matrix around a

circular rigid inclusion in simple shear has an eye-shaped

pattern (Fig. 1A). On the other hand, Passchier et al. (1993)

concluded from a series of experimental studies that the type

of flow (eye- or bow tie-shaped) depends on the nature of the

viscous matrix (Newtonian or power-law, respectively).

However, Masuda and Mizuno (1996) concluded theoreti-

cally that the nature of the matrix does not influence the type

of flow, which in their analysis is always eye-shaped. Bons
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et al. (1997) and Pennacchioni et al. (2000) concluded from

theoretical studies that the Newtonian or non-Newtonian

(power law) character of the viscous fluid does not

significantly affect the flow pattern around a rigid circle,

but while Pennacchioni et al. (2000) obtained a flow pattern

that always had a bow tie shape (Fig. 1B), Bons et al. (1997)

concluded that the boundary conditions for approximately

simple shear can determine the characteristics of the flow

field around an inclusion, and eye- and bow tie-shaped

patterns are possible. Note that all these studies on flow

around rigid inclusions only considered circular inclusions.

Eye- and bow tie-shaped patterns are illustrated in Fig. 1.

The eye-shaped pattern is characterized by: (i) closed

streamlines around the inclusion, with an elliptical (eye)

shape away from the inclusion and tending to become

circular close to it; (ii) open streamlines elsewhere in the

model domain, rectilinear away from the inclusion and

bulging when around it; (iii) an eye-shaped separatrix

between open and closed streamlines (the separatrix is a line

separating open from closed streamlines); (iv) two stagna-

tion lines (null velocity), one at each side of the inclusion

and on the median line (X-axis), starting at the tip of the

outermost closed streamline. This flow pattern may exist in

incompressible fluids if the shear zone width is infinite or if

velocity components normal to the shear direction are

allowed in the far field flow (e.g. Masuda and Ando, 1988;

Masuda and Mizuno, 1996; Bons et al., 1997). The bow tie-

shaped pattern is characterized by: (i) closed streamlines

around the inclusion, with an elliptical (eye) shape in the

outermost cells and changing to circular inwards; (ii) reflux

streamlines at the sides of the inclusion, with two distinct

halves, one on each side of the median line, with opposite

velocity components along the shear direction; (iii) open

streamlines passing at the inclusion crests (inclusion

portions facing shear zone walls), rectilinear away from

the inclusion and bulging when around it; (iv) a bow tie-

shaped separatrix between open and closed streamlines and

between open and reflux streamlines; (v) two stagnation

points on the median line, one to each side of the inclusion,

between closed and reflux streamlines.

Strain localization is commonly observed in mylonites in

the form of shear bands of variable thickness. In layered

mylonites (Fig. 1C), layers of different viscosity subject to a

constant stress can flow at different rates, with the

generation of microscopic/mesoscopic shear zones in

which the ratio between their thickness and the rigid

inclusion’s least dimension can approach one (cf. fig. 4c in

Marques and Cobbold, 1995). Marques and Cobbold (1995)

verified experimentally that confinement affects rigid
Fig. 1. (A) and (B) Schematic representations of perturbation of streamlines aroun

pattern. (C) Photograph of a natural example of a layered mylonite from the B

retrogressed to amphibolite facies. Note that, for the same PT conditions, layers be

deform by folding (white arrow), the lighter plagioclase-rich layer deforms by fra

metamorphic minerals like pyroxene and garnet. This strain partitioning between

inside the wider shear zone, and lead to confined flow. See Marques et al. (1996)
inclusion rotation and investigated the effects on flow of

passive markers around the inclusion. Pennacchioni et al.

(2000) concluded that the flow around a rigid circle is

always bow tie-shaped, and investigated the effects of

confinement on the location of stagnation points, but did not

present or discuss the effects on flow pattern. Marques and

Coelho (2001) analysed the effects of confinement on

rotation of elliptical rigid inclusions but not the effects on

matrix flow. Biermeier et al. (2001) investigated the effects

of confinement on the rotation of a rigid circle, but not the

effects on matrix flow.We now follow up the work begun by

Marques and Cobbold (1995) and Marques and Coelho

(2001) through investigation of the influence of confinement

(as indicated by the ratio, S, between the width of the shear

zone, H, and the inclusion’s least principal axis. e2, SZH/e2;

Fig. 2A) on matrix flow (see also Biermeier et al., 2001;

Samanta et al., 2003), and analyse the results in long and

short channels to evaluate the effects of confinement at short

and long distances from the inclusion. Note that most (if not

all) model domains and figures accompanying works on

flow patterns around rigid circles are short range (e.g.

Masuda and Ando, 1988; Passchier et al., 1993; Masuda and

Mizuno, 1996; Pennacchioni et al., 2000), and most

observations carried out in micro-tectonics (analysis of

porphyroclast systems for example) are in the same range—

commonly less than 10 inclusion diameters. We can,

therefore, define an effective channel length and an effective

flow pattern. We use analogue and numerical modelling to

address these issues.
2. Analogue experiments

We used polydimethyl-siloxane (PDMS—manufactured

by Dow Corning of Great Britain under the trade name SGM

36) as the viscous matrix (see Weijermars (1986) for PDMS

properties), and Plexiglas as the rigid inclusion. The

experiments were carried out in the shear box described in

Marques and Coelho (2001). The shear box has a vertical

shear plane, and comprises two horizontal fixed upper and

lower walls (normal to the shear plane), two vertical side

walls (parallel to the shear plane), one fixed and the other

motor-driven, and two vertical top walls articulated with the

side walls to keep the volume constant and maintain the

model’s geometry. To ensure homogeneous simple shear

flow in the model, PDMS adheres perfectly to the lateral

walls (which transmit simple shear flow to PDMS), and a

neutral liquid soap is used to ensure free slip on all other

walls. In this way, simple shear flow is homogeneous
d a rigid circle in the XZ plane. (A) Eye-shaped pattern. (B) Bow tie-shaped

ragança Massif, NE Portugal, which is a mafic granulite deformed and

have quite differently. For instance, while the darker amphibole-rich layers

cturing. A similar situation is observed with layers still rich in high-grade

adjacent layers can concentrate shear deformation in narrow, softer bands

for the geological setting. Sense of shear is top to the right (West).



Fig. 2. (A) Representation of the computational domain with an elliptical inclusion. H and L are the height and length of the domain; e1 and e2 are the principal

axes of the elliptical inclusion; f is the angle between e1 and X, and is positive anticlockwise; Qn are quadrants from 1 to 4. The shear direction is parallel to the

X-axis and the sense of shear is top to the right in all figures. (B) Shapes used in this study and respective aspect ratios (R). Shapes are not drawn to scale.
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throughout the model and is only driven by the lateral walls.

The width (H) of the initial rectangular experimental shear

zone was 80 mm, the length (L) 500 mm and the depth

30 mm in the case of the circular inclusion with RZ10 mm

(Fig. 2A), and 240, 500 and 30 mm, respectively, in the case

of the circular inclusion with RZ4 mm, which gives S

values of 4 and 30, respectively.

We subjected the PDMS parallelepipeds with the

embedded inclusions to parallel-sided simple shear, and

the results are shown in Fig. 3. The strain rate ( _g) used in the
experiments was 6.25!10K5 sK1, which falls in the

Newtonian field of PDMS as defined by Weijermars
(1986). Before starting the experiment, we stamped the

surface of the PDMS with a passive grid of black dots to be

able to follow displacements in the viscous matrix. The

displacement paths shown in Fig. 3 were obtained by

superimposing photographs of successive stages at regular g

intervals and drawing arrows that represent the change of

position of individual dots. Fig. 3 reveals clear bow tie-

shaped patterns. The stagnation points (marked by white

dots in Fig. 3) are close to the inclusion perimeter in the case

of SZ4 (Fig. 3A) and further from the inclusion in the case

of SZ30 (Fig. 3B). We estimated the position of the

stagnation points as the ratio D between the abscissa of the



Fig. 3. (A) and (B) Experimental streamlines defining a bow tie-shaped flow pattern for S values of 4 and 30, respectively. The black rigid circular inclusion is

embedded in PDMS. The white dots on each side of the inclusion mark the stagnation points. Note that the distance of the stagnation points from the inclusion

perimeter is significantly greater for SZ30. Finite shear strain is ca. 1.5 in (A) and ca. 1.1 in (B).
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stagnation point and the circle radius, which is ca. 1.8 for

SZ4 and 3.6 for SZ30.
3. Model formulation

3.1. Governing equations and boundary conditions

Incompressible viscous fluid rheology is widely accepted

in the literature as a simple but effective approximation to

the behaviour of rocks undergoing ductile deformation. In

the case of steady-state motion of a viscous, incompressible

Newtonian fluid at very low Reynolds number, the

dynamical Navier–Stokes flow equations reduce to the

Stokes approximation. The mathematical model used in

the present work is based on the two-dimensional (2-D)

steady-state incompressible Navier–Stokes equations

(Granger, 1994):

r
vu

vt
Cu$Vu

� �
ZKVpChV2uCF (1)

V$uZ 0 (2)

where u is the velocity vector, p the pressure, r the density,

h the dynamic viscosity and F the external body force (r and

h are constant and F will be assumed negligible in this

model). Then, defining the scaled variables �xZx=L,
�uZu=U, �pZp=P and �tZ t=T , in terms of the characteristic

length L, velocity U, pressure P and time TZL/U, Eqs. (1)

and (2) become:

v �u

vt
C �u$V �uZKEu��pC

1

Re
�2 �u (3)

�$ �uZ 0 (4)

where ReZrUL/h and EuZP/rU2 are, respectively, the

Reynolds and Euler numbers. For flows at low characteristic

velocity U and high viscosity h, we have Re/1 and

EuOO1, and all inertial terms in Eq. (3) become negligible.

We thus obtain the Stokes approximation of the momentum

equation for quasi-static (creeping) flows, which in dimen-

sional form reads:

KVpChV2uZ 0 (5)

The boundary conditions needed to complete the

mathematical formulation and define a simple shear flow

were (i) velocity at YZGH/2 set to valuesGVtop in order to

induce a vorticity value of K1 in the far field flow, (ii)

velocity set to vary linearly between top and bottom

velocities (with zero-mean) at left and right end boundaries

(straight-out condition), and (iii) no-slip condition at the

interface between inclusion and matrix. The inclusion’s

rotation rate is a direct consequence of these boundary

conditions. In the particular case of the circle, and for direct

comparison with the analogue experiments, (i) the matrix

viscosity was taken equal to the viscosity of PDMS (5!
104 Pa s), (ii) the width (H) and length (L) of the

computational domain were set equal to the experimental

domain, (iii) the velocities at the top and bottom boundaries

were set equal to the experimental velocities, (iv) the

velocity was set to vary linearly (with zero-mean) at the left

and right boundaries, and (v) a perfect adherence condition

at the inclusion–matrix interface was assumed.

The flow equations were solved using the finite-element

program FEMLAB (2002) developed by Comsol, which

runs in MATLAB software. The flow equations, with the

specified boundary conditions, were solved in the primitive

variables uh(u, v) and p over a finite element mesh, using

the algorithm for stationary incompressible Navier–Stokes

flows implemented in FEMLAB. Further details on the

computational method and numerical procedures are

provided by Gresho and Sani (2000), as well as in the

above-mentioned reference.
3.2. Model settings

The above equations were solved for the 2-D rectangular

domain illustrated in Fig. 2A, which was filled with an

incompressible linear viscous fluid with matrix viscosity (m)

set to one. High-viscosity fluid-modelled inclusions (mZ
1.0eC6) or solid inclusions were positioned at the centre of

the domain (x, yZ0). The width (H) of the computational

domain was chosen according to the desired confinement

(SZH/e2). The length (L) was set to at least 40 times the

inclusion longest axis (e1). The angle between the

instantaneous direction of e1 and the shear direction (X) is

the inclusion orientation (f), which is positive

counterclockwise.

The inclusion shapes studied were ellipses, rectangles,

lozenges and skewed rectangles (Fig. 2B), with aspect ratios

(RZe1/e2) equal to 1, 1.5, 3 and 6, to simulate most of the

basic shapes found in natural shear zones. To determine the

rectangle R we found the ratio between the long and short

sides (inscribed ellipse as in Ghosh and Ramberg (1976)),

and for the lozenge and skewed rectangles we used the

aspect ratio of the circumscribed ellipse. In this case, the

ellipse’s longest axis is inclined relative to X when the long

sides of the inclusion are parallel to X.
4. Numerical results

The reliability of the numerical procedure was tested

using analytical results obtained for a circular inclusion

(Jeffery, 1922). We used a large S value (SZ30) and the

result agrees remarkably well with the analytical solution.

The circular rigid inclusion rotated at a constant u in the

numerical model, equal to 0:5 _g (or 0.5W) as predicted by

Jeffery (1922).



Fig. 4. Velocity vector fields close to the inclusion for SZ10.0 ((A) and (B)) and SZ1.5 ((C) and (D)). Sense of shear is top to the right.
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Fig. 5. Colour maps to illustrate confinement effects on pressure for the circle at SZ10.0 (A) and SZ1.5 (B). Sense of shear is top to the right.
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4.1. Velocity

The velocity vector fields are illustrated in Fig. 4. We

show the example of the ellipse with aspect ratio equal to

1.5 because it is quite illustrative of the influence of the rigid

inclusion and of the effects of confinement on the nearby

flow. Inclusion shape also plays an important role, which

will be apparent in the streamline maps presented below.

The degree of influence decreases with increasing distance

from the rigid body, and flow far from the inclusion

(especially in the Y direction) is homogeneous simple shear.

The rotation behaviour of a rigid elliptical inclusion in

confined flow is analysed by Taborda et al. (2004).
When confinement is small (SO10), the X-component

of the velocity field is always positive in the matrix in

the upper half of the model (Fig. 4A and B) and

negative in the lower half, in agreement with the

applied far field velocity and matrix vorticity. On the

other hand, when flow is confined, e.g. SZ1.5 (Fig. 4C

and D), there are regions around the inclusion where the

X-component of the velocity field is negative in the

upper half and positive in the lower half, i.e. where

there is back-flow. When SO10, the Y-component of the

velocity field close to the inclusion is always positive in

Q2 (Fig. 4A) and Q3, and negative in Q1 (Fig. 4B) and

Q4. When S is small, the Y-component of the velocity



Fig. 6. Colour maps to illustrate confinement effects on vorticity for the circle at SZ15.0 (A) and SZ1.5 (B), and to show the changes in vorticity configuration and magnitude with f ((C) and (D)). Sense of shear

is top to the right.
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Fig. 7. Flow maps for increasing S values. Note the considerable changes in flow pattern, which induce migration of stagnation points (marked by black dots

and numbered in (A)) and of vortexes. In (C) and (D) we added the trajectories of material particles to evaluate the degree of stair-stepping. Sense of shear is top

to the right in (A) and (B), and top to the left in (C) and (D).



Fig. 8. Flow maps for increasing S value to show the significant migration of stagnation points (marked by black dots). Sense of shear is top to the right.
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field close to the inclusion is negative in a large part of

Q2 (Fig. 4C) and Q3, and positive in a large part of Q1

(Fig. 4D) and Q4.

4.2. Pressure

The pressure fields are illustrated in Fig. 5. As could

be expected from the type of far field flow and the
circular shape of the rigid inclusion, the pressure

distribution around the rigid inclusion is anti-symmetrical

relative to the X- and Y-axes, with peaks half way

between those axes and null pressure on the axes when

S is large. As S tends to one (Fig. 5B), significant

changes occur in the distribution and magnitude of

pressure: pressure gradients increase and pressure peaks

shift towards the Y-axis.



 

Fig. 9. Graph to illustrate migration of stagnation points with S. Note that the experimental data are in close agreement with the numerical results.
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4.3. Vorticity

The colour maps shown in Fig. 6 were produced to

evaluate vorticity in the matrix and inclusion. Vorticity

configuration and magnitude in the matrix around the

inclusion change markedly with S, and when confinement is

effective, inclusion shape, aspect ratio and orientation also

play an important role.
4.4. Matrix flow

The matrix displacement fields are represented by the

streamline plots shown in Figs. 7, 8 and 11–13, which

illustrate the way the matrix flows around a rigid inclusion

and the effects that confinement may have on flow patterns.

Concerning the circle, the effects with increasing

confinement are (Figs. 7 and 8): (1) eye-shaped closed

cells around the inclusion tend to a circular shape and shift

towards the inclusion perimeter. At SZ1 these closed cells

only exist in a very narrow corona around the inclusion. (2)

Reflux streamlines to each side of the inclusion change

shape considerably, especially when closer to the inclusion.

V-shaped streamlines change to U-shaped, with inwards

embayments at the sides of the inclusion when S approaches

one. (3) The number of vortexes increases. Two are

apparent at S!5 in the reflux cells, and two more appear

at SZ1.1 very close to the inclusion, one at each side,

between the closed cells surrounding the inclusion and the

reflux streamlines. (4) With increasing S, the stagnation

points between the reflux streamlines and the closed cells

around the inclusion move away from the inclusion, as

shown in Figs. 7 and 8 and by the graph of Fig. 9. (5) The

number of stagnation points increases. For SO20, there are

no closed cells at the sides of the inclusion (at least to

distances of about 100 inclusion diameters). Therefore, only
two stagnation points exist, one to each side of the inclusion

and on the X-axis (as given in the definition and shown in

Figs. 7 and 8). With confinement, the flow becomes more

complex and vortexes form at the sides of the inclusion,

close to and away from it, thus generating more stagnation

points. At SZ1.1, there are eight stagnation points

(Fig. 7A). (5) Open flow lines passing at the inclusion

crests become straighter in most of their length, except for

two regions close to the inclusion where embayments form,

whose depth increase with confinement. The effective eye-

shaped pattern observed in our model for SZ200 shows that

closed cells around the inclusion can reach as far as 12

inclusion diameters.

Concerning other inclusion shapes (ellipse, square,

rectangle, lozenge and skewed rectangles), we will only

consider the square, ellipse and lozenge for description of

matrix flow, because for the other shapes no significant

differences were observed. For inclusions with RO1, and in

contrast to the circle, the presented ‘streamlines’ are not

streamlines sensu strictu, because they are instantaneous or

only valid for a short inclusion rotation. Anyway, for the

case of the square we give the velocity fields for three

different orientations (Fig. 10) as background for the

‘streamline’ maps (Figs. 11–13). For SZ15 (Fig. 11), the

flow pattern around all the shapes is similar to the case of

the circle. The exceptions are the skewed rectangles, which

show a slight asymmetry relative to X at the sides of the

inclusions and a migration of the stagnation points towards

the inclusion perimeter. With regard to the square at fZ08,

the effects on flow with increasing confinement are similar

to the circle, but the vortexes close to the inclusion sides

were not observed. Therefore, only four stagnation points

were observed. With inclusion rotation, however, and unlike

the circle, the geometry changes and so does the flow

pattern. At fZ08 and SZ1.5 (Fig. 12A), the flow pattern is



Fig. 10. Velocity vector fields for the square at SZ1.5 ((A)–(C)) and SZ15. Note the considerable variations with confinement and with square orientation, and also the circular cells at the square corners. (A) fZ
08; (B) fZ22.58; (C) fZ458. Sense of shear is top to the right.
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Fig. 11. ‘Streamline’ maps for square (A), ellipse (B) and skewed right rectangle (C) at SZ15 and fZ08. Note the similarity of (A) and (B) to the circle. Note

also the asymmetry of the ‘streamlines’ and the migration of the stagnation point towards the inclusion perimeter in the skewed rectangle. Sense of shear is top

to the right.
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still similar to the case of the circle. From fZ0 to 22.58 at

SZ1.5 (Fig. 12B), the flow pattern undergoes major

modifications: it becomes strongly asymmetrical relative

to X, and two vortexes arise at the upper left and lower right

corners of the square. From fZ22.5 to 458 at SZ1.5 (Fig.

12C and D), the vortexes change corners and at fZ458

symmetry relative to X is re-established. For fZ22.5 and

458 at SZ1.5, eight stagnation points must exist. A similar

pattern is observed for the lozenge at fZ908, and similar
behaviour is observed in the rectangle and skewed

rectangles during a whole revolution. Regarding the ellipse

and the lozenge at SZ1.5, the flow patterns are similar at

fZ308 but significantly different at fZ608. At fZ308

(Fig. 13A), the flow patterns close to the inclusion are strongly

asymmetrical relative to X and only four stagnation points are

observed. At fZ608, the flow patterns close to the lozenge

regain symmetry relative toX, and the flow pattern close to the

ellipse (Fig. 13B) becomes more asymmetrical.



Fig. 12. ‘Streamline’ maps for the square at SZ1.5 and for fZ08 (A), fZ22.58 (B) and fZ458 (C), and velocity vector field for comparison (D). Note the significant variations with inclusion orientation and

migration of vortexes. Arrows indicate position of the vortexes outside the picture, and black dots mark the position of stagnation points. Sense of shear is top to the right.
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Fig. 13. ‘Streamline’ maps for the lozenge at SZ1.5 and fZ308 (A), and for the ellipse at SZ1.5 and fZ608 (B). Sense of shear is top to the right.
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5. Discussion and conclusions

When we compare the present results with the classic

eye- and bow tie-shaped patterns for rigid inclusions in non-

slipping contact with a viscous matrix, significant differ-

ences stand out as to the bow tie-shaped pattern: (1) for S!5

two vortexes arise in the middle of the reflux streamlines

and centred on the X-axis, which doubles the number of

stagnation points observed in the definition. At SZ1.1 two

more vortexes appear close to the inclusion, which

multiplies the number of stagnation points by four. (2)

The open reflux streamlines become closed cells for S!5.

(3) With increasing S, the stagnation points either disappear

or move away from the inclusion. At very small S values,

the flow pattern becomes even more complex and the classic

separatrix changes configuration. The stagnation points

close to the inclusion seem to result from the interaction

between flow in the matrix and inclusion rotation. Stagna-

tion points within closed circuits (3 in Fig. 7A) result from
opposite senses of flow, and stagnation points like 1 and 2 in

Fig. 7A appear in the boundary between closed and open

flow lines. Concerning the eye-shaped pattern, there are

minor differences between our model and the classic

definition. Note, however, that closed cells around the

inclusion can reach as far as 12 inclusion diameters for SZ
200. This may have a considerable influence on the

geometry of tails around the inclusion.

Despite the facts that, in our analogue and numerical

models, (i) the flow is homogeneous simple shear, (ii) that

the fluid used is Newtonian viscous, and (iii) we use a

parallel-sided model shear zone, the flow pattern obtained

has the shape of a bow tie, in contrast to the models of Cox

et al. (1968), Masuda and Ando (1988), Passchier et al.

(1993) and Masuda and Mizuno (1996). However, our

results are, at least partially, in agreement with those of

Bons et al. (1997) and Pennacchioni et al. (2000). In the

present study, the results of numerical computations are

supported by experimental analogue results. The positions
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of the stagnation points are in good agreement with the

numerical results (Fig. 9). The numerical model shows that

the flow pattern in a viscous Newtonian matrix around a

circular rigid body depends strongly on S; in long channels

and in strict terms, the flow pattern is bow tie-shaped, but

tends to become eye-shaped with increasing S. In terms of

comparison with structures occurring in natural mylonites,

we concentrate our attention on the flow in the neighbour-

hood of the rigid inclusion, commonly less than 10 inclusion

diameters, because structures associated with the inclusion

tend to occur within this range. Under these circumstances,

we can define an effective channel length and, consequently,

an effective flow pattern. The effective flow pattern has a

prominent bow tie shape for S!20, but is, for all practical

purposes, effectively eye-shaped for S values greater than

50. This may have great influence on the geometry of tails

around the rigid inclusion. For both short and long distance

observations, we may say that, if recrystallization tails form

around the inclusion, the degree of stair-stepping (i.e. the

step-like distribution of tails around the inclusion relative to

the reference plane) depends on S, because the flow pattern

depends on the degree of confinement. Note that the degree

of stair-stepping for SZ1.5 should be greater than for SZ
50, and even greater than for SZ100, because the reverse

flow cell is thinner for higher S and, therefore, the open flow

lines passing close to the inclusion crests can go closer to the

reference plane. To illustrate this, in Fig. 7C and D we show

the trajectories that particles of recrystallized material

would follow if the rigid inclusion had a mantle with

rheology similar to the matrix.

It is interesting to note that the flow type is more sensitive

to S than is the rotation rate of the inclusion. For SO5 the

rotation rate is no longer appreciably affected by confine-

ment, although the flow pattern only changes from bow tie-

to eye-shaped at a much higher S value.

Can matrix rheology be inferred from flow patterns

around a rigid circular inclusion in simple shear? The

answer to this long-standing question has been partly

answered by Bons et al. (1997) and Pennacchioni et al.

(2000), and we now add the significant role that confinement

can play. The present study shows that the same Newtonian

viscous fluid can flow around a rigid circle with effective

eye- or bow tie-shaped patterns, depending on the degree of

confinement. We conclude that one must be very cautious

when trying to infer rock rheology from model flow

patterns. In the case of natural structures, we should be

even more cautious because the flow pattern can only be

tentatively inferred from geometrical features. For instance,

porphyroclast systems, a pervasive structure found in

mylonite zones, commonly exhibit stair-stepping of tails, a

geometrical feature that could be related to the type of flow

around the inclusion. However, the present study shows that

the type of flow depends on S, and previous theoretical work

showed that the type of flow is almost independent of matrix

rheology (Newtonian or power-law).
Acknowledgements

This is a contribution to research projects GEOMODELS

(POCTI/CTA/38695/2001 andPOCTI/CTE-GIN/59324/2004)

and TEAMINT (POCTI/CTA/48137/2002). Santanu Bose

is grateful to CSIR, India, for giving him leave to carry out

work at the University of Lisbon. The final version of this

paper benefited from the constructive reviews by L. Arbaret

and T. Masuda, and editorial work by J. Hippertt. Special

thanks are due to Ramon Anton of Dow Corning

(Barcelona, Spain) for having made possible the acquisition

of the PDMS. Experiments were performed in the

Experimental Tectonics Laboratory of LATTEX-FCUL.

We thank Paul Covill for having corrected the English.
References
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